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ABSTRACT ?/;i , < - ~ ~ * ~ ~ ~ $ ~  -.. 

Data are presented on t h e  fat igue cha rac t e r i s t i c s  i n  the  l i f e  

6 between approximately 10 and 1 0  

including s t ee l s ,  aluminum, titanium, beryllium, and high temperature 

alloys.  Both cyc l ic  s t r a i n  hardening and s t r a i n  softening mater ia ls  

were investigated.  Linear re la t ionships  were found when e l a s t i c  

s t r a i n  range and the  p l a s t i c  s t r a i n  range were p lo t t ed  on log-log 

coordinates against  l i f e .  

cha rac t e r i s t i c s  cons is t s  of a p lo t  of l i f e  versus t o t a l  s t r a i n  range 

cycles f o r  a l a rge  number of mater ia l s  

The model selected f o r  representing f a t igue  

which i s  the  sum of e l a s t i c  and the  p l a s t i c  components. I n  the  low 

cycle range, t he  p l a s t i c  s t r a i n  range predominates and i n  the high cycle 

range t h e  e l a s t i c  s t r a i n  range predominates. Empirical r e l a t ions  have 

been developed f o r  predict ing both the e l a s t i c  and p l a s t i c  l i n e s  from 

data obtainable i n  the  conventional t ens i l e  t e s t .  The v a l i d i t y  of these 

pred ic t ions  i s  demonstrated by experimental data on a number of 

INTRODUCTION 

A considerable i n t e r e s t  e x i s t s  a t  t h e  present time i n  low cycle 

fa t igue,  t h i s  i n t e r e s t  a r i s ing  because of the many appl icat ions which 

~ _ I X C ~ . T ~  desigii f o r  f i n i t e  l i f e .  That low cycle f a t igue  i s  governed by 

cyc l ic  p l a s t i c  s t r a i n  range has been shown by numerous invest igators ,  

and the  power l a w  r e l a t i o n  between l i f e  and p l a s t i c  s t r a i n  range as pro- 
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posed by Manson and Coffin has  been amply ver i f ied.  

r e l a t i o n  can be applied it i s  necessary t o  determine the  cyc l ic  p l a s t i c  

s t r a i n  range. While i n  many appl icat ions t h e  t o t a l  s t r a i n  range may be 

known, or  experimentally determined, separation of t h e  t o t a l  s t r a in  range 

i n t o  i t s  e l a s t i c  and p l a s t i c  components may involve some d i f f i cu l ty .  For 

most materials,  l i f e  above 1000 cycles involves appreciable e l a s t i c  

s t r a in ,  A t  about 10,000 cycles  the  e l a s t i c  and p l a s t i c  s t r a i n  ranges are 

a t  about t he  same order of magnitude, and above 100,000 cycles  the  plas-  

t i c  s t r a i n  range i s  negl igible  compared t o  the  e l a s t i c  s t r a i n  range. I n  

f a c t ,  f o r  some very strong materials t h e  e l a s t i c  s t r a i n  range may start 

t o  predominate at  l i v e s  of about 100 cycles  o r  less .  

p l a s t i c  s t r a i n  range may govern l i f e ,  t he  e l a s t i c  s t r a i n  range assumes 

considerable importance i n  the  intermediate cycle l i f e  range, e i t h e r  

because it i s  needed i n  order t o  compute the  p l a s t i c  s t r a in ,  or because 

it i s  t h e  l a r g e r  component and may therefore  be a better measure of t h e  

l i f e  than  t h e  p l a s t i c  s t ra in .  

However, before t h i s  

Thus, although 

Based on l imi ted  da ta  ava i lab le  i n  1960 it has been proposed 

(ref.  l b )  t h a t  t he  e l a s t i c  component of t he  s t r a i n  range would a l s o  sat- 

i s f y  a power l a w  re la t ionship  with cyclic l i f e ,  s i m i l a r  t o  t h a t  ex is t ing  

between p l a s t i c  s t r a i n  range and cycl ic  l i f e .  Experimental v e r i f i c a t i o n  

of such re la t ionships  were subsequently shown ( re f .  2 )  f o r  s ixteen mate- 

r ials of various composition and heat treatment. 

f a i r l y  extensively ve r i f i ed  t h a t  l i f e  i s  governed by the  t o t a l  s t r a i n  

range: cnnsisf,ing of tiii e i a s t i c  and a p l a s t i c  component, each of which 

produces a s t r a igh t  l i n e  when p lo t t ed  against  l i f e  on log-log coordinates. 

Thus, it has  been 
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Because of t h i s  l i nea r i ty ,  r e l a t ive ly  f e w  experimental data  are 

needed t o  characterize the fat igue behavior of a mater ia l  i n  t h e  low and 

intermediate cycl ic  l i f e  range between approximately 10 and lo6 cycles. 

However, there  are appl icat ions i n  which it i s  desired t o  estimate the  

l i f e  i n  advance of fa t igue experimentation. 

The a v a i l a b i l i t y  of t h e  la rge  amount of fa t igue  data i n  reference 2, 

and addi t ional  data  generated since the publ icat ion of t h e t  report ,  has 

made possible  t h e  undertaking of an empirical cor re la t ion  approach f o r  

estimating both t h e  e l a s t i c  and p l a s t i c  s t r a i n  range components from 

s t a t i c  t e n s i l e  propert ies  alone. 

The object of t h i s  report  i s  t o  review the  data and ver i fy  t h e  pre- 

viously proposed assumptions t h a t  these data can accurately be repre- 

sented by s t r a igh t  l i n e s  i n  the l i f e  range of 10 t o  lo6 cycles and t o  

develop a method of predict ing these s t r a igh t  l i n e s  from simple t e n s i l e  

data. 

By comparing t h e  t e n s i l e  propert ies  of over twenty materials with 

selected poin ts  on t h e i r  fa t igue curves represented i n  the  form of l i f e  

versus e l a s t i c  and p l a s t i c  s t r a i n  ranges, an approach has been found 

whereby t h e  s t a t i c  t e n s i l e  propert ies  can be used t o  predict  t he  fa t igue  

properties.  

t h e  predict ions of t h e  nethod with experimental results f o r  t h e  mater ia l s  

used t o  obtain the  cor re la t ion  and f o r  six materials t e s t ed  a f t e r  t h e  

co r re l a t ion  w a s  developed. 

e - q e r h ~ z t z l  i-esiiits anc tnose predicted by a method recent ly  proposed by 

Langer ( re f .  3), and l a t e r  studied by Tavernell i  and Coffin (ref. 4 ) .  

Checks on the  v a l i d i t y  of t h e  method are made by comparing 

A comparison i s  a l s o  presented between t h e  
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EXPEXIMENTALLY DETERMINED STRAIN-CYCLING BEHAVIOR OF MATERIALS 

The basic  equations of any s t r e s s  analysis  a re  the  equilibrium equa- 

t i ons  involving s t resses ,  and the  compatibil i ty equations involving t o t a l  

s t ra ins .  Thus, it i s  the  in t e r r e l a t ion  between the  s t r e s ses  and t o t a l  

s t r a i n s  t h a t  i s  required t o  solve these equations. For many appl icat ions 

involving cyc l ic  s t ra ining,  the  r e l a t ion  between s t r e s s  range and t o t a l  

s t r a i n  range, along with some l i f e  re la t ion,  w i l l  be required f o r  t h e  

solut ion of the  problem (ref.  1). Once the  s t r e s s  and s t r a i n  d i s t r ibu -  

t i o n s  a r e  determined, it then becomes possible  t o  make some estimate of 

the  cyc l ic  l i f e  of t h e  structure.  It i s  found desirable, before deriving 

the  r e l a t i o n  between s t r e s s  range and t o t a l  s t r a i n  range, t o  separate t h e  

t o t a l  s t r a i n  range i n t o  i t s  e l a s t i c  and p l a s t i c  components, and t o  

express each of these components i n  terms of cycl ic  l i f e .  

Relation between p l a s t i c  s t r a i n  range and cyc l ic  l i f e .  

If a p l o t  i s  made on logarithmic coordinates of  the  p l a s t i c  s t r a i n  

range % versus the  number of cycles t o  f a i l u r e  Nf, t he  r e s u l t  i s  

found t o  be very nearly a s t r a igh t  line. 

t o  the  cyc l ic  p l a s t i c  s t r a i n  range by a power l a w  i n  the  form 

Thus the  cycl ic  l i f e  i s  r e l a t ed  

Z 

A€ P =mif  (1) 

where M and z a r e  mater ia l  constants. 

Equation (1) w a s  f i r s t  proposed by Manson (ref .  5 and 6 )  on t h e  

b a s i s  of l imited experimental data by Sachs and h i s  co-workers ( r e f . ' 7 ) .  

The exponent, z, w a s  suggested as a variable,  d i f fe r ing  among materials. 

For t he  aluminum a l loy  on which the  data were available,  Manson suggested 

a value of An improved analysis of  t he  data w a s  la ter  made by z = -1/3. 
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Coffin (ref.  S), who found t h a t  

t i o n  of  t he  data, and who a l s o  suggested t h a t  t h i s  value of z i s  

applicable t o  a l l  materials. 

found t h a t  equation (1) w a s  va l id  but t h a t  

constant ra ther  than a universal  constant. 

represents  a r e l a t i o n  t h a t  has been proven va l id  by a number of inves- 

t iga tors ,  and f o r  a la rge  number of materials. 

Relation between e l a s t i c  strain range and cycl ic  l i fe .  

z = -1/2 provided a b e t t e r  representa- 

I n  more recent  work (ref.  2 ) ,  t h e  authors 

z 

Equation (l), therefore,  

appeared t o  be a material 

When fa t igue  specimens a re  cycled between fixed s t r a i n  limits, the  

s t r e s s  range generally changes during the  t e s t .  

increases  with cycles, t he  material i s  ca l led  a cyc l ic  s t r a i n  hardening 

one, and if t h e  stress range decreases with cycles, it i s  ca l led  cyc l ic  

s t r a i n  softening. As was shown i n  reference 2, t he  most s ign i f icant  

changes i n  stress range f o r  many materials occurred within the  first 

20 percent of specimen l i fe .  

of t he  l i f e ,  t he  s t r e s s  range remained r e l a t i v e l y  constant. This value 

of s t r e s s  range i s  then considered as a cha rac t e r i s t i c  value correspond- 

ing t o  t h e  applied s t r a i n  range. For t h e  purpose of analysis  t he  s t r e s s  

range measured a t  one half  the  number of  cycles t o  f a i l u r e  w a s  se lected 

as the  cha rac t e r i s t i c  value, and subsequently re fer red  t o  as t h e  

asymptotic stress range Au. 

I f  the s t r e s s  range 

During the  remaining 80 percent o r  more 

For a la rge  number of mater ia ls  tes ted,  it w a s  found t h a t  p l o t s  of 

t h i s  s t r e s s  range (or by dividing it by t h e  e l a s t i c  modulus and ca l l i ng  

it an e l a s t i c  s t r a i n  range) versus the cyc l ic  l i f e ,  on logarithmic 

coordinates r e s u l t  i n  reasonably s t ra ight  l i n e s  (refs. l b  and 2 ) .  Thus 
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t h e  cycl ic  l i f e  may be assumed t o  be r e l a t ed  t o  the  e l a s t i c  s t r a i n  range 

by a power l a w  i n  the  form 

( 2 )  
Y aEel = &/E = (G/E) Nf 

where Aee, 

cyc l ic  l i f e  Nf, E i s  the  e l a s t i c  modulus, and G and y are other 

mater ia l  constants. 

i s  the  cyc l ic  e l a s t i c  s t r a i n  range corresponding t o  the  

Although equation ( 2 )  adequately represents  the  cha rac t e r i s t i c  

behavior of a la rge  number of materials f o r  engineering use, it i s  

admittedlj only an approximation of t h e  t r u e  mater ia l  behavior. For 

p r a c t i c a l  purposes, however, it can be regarded as va l id  i n  t h e  l i f e  

range of usual i n t e re s t ,  up t o  10 cycles, and i n  many cases up t o  

even higher l ives .  

6 

Alternate e l a s t i c  r e l a t i o n  involving an endurance l i m i t .  

Equation ( 2 )  implies t h a t  the  l i f e  increases  with a decrease i n  

e l a s t i c  s t r a i n  since the  exponent y i s  always negative and thus f o r  any 

e l a s t i c  s t r a in ,  corresponding t o  an applied s t r e s s ,  w i l l  predict  a f i n i t e  

l ife.  

endurance l i m i t ;  t h a t  is, a s t r e s s  l eve l  below which the  l i f e  becomes 

e s sen t i a l ly  in f in i t e .  

increases t o  a grea te r  extent than i s  inp l ied  by equation ( 2 ) .  

t o  take cognizance of the  poss ib i l i t y  of t he  existence of an endurance 

l i m i t ,  t h e  following der ivat ion i s  made: 

Let it be assumed t h a t  the  asymptotic s t r e s s  range-strain range 

I n  r e a l i t y ,  it i s  w e l l  recognized t h a t  many mater ia ls  exhib i t  an 

If it does not become i n f i n i t e ,  a t  l e a s t  it 

I n  order 

rclatirjn coincides with the  e l a s t i c  l i ne  up t o  a c r i t i c a l  s t r e s s  range, 

thus  implying t h a t  u n t i l  t h i s  s t r e s s  range i s  reached, no p l a s t i c  flow 
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w i l l  take place. Since, according t o  equation (l), f i n i t e  l i f e  occurs 

only i f  p l a s t i c  flow develops, t he  l i f e  w i l l  be i n f i n i t e  i f  t he  s t r e s s  

range i s  maintained below t h i s  c r i t i c a l  level.  By def in i t ion ,  then, t h i s  

s t r e s s  amplitude then becomes the  endurance l i m i t ,  bend, and t h e  s t r e s s  

range associated with t h i s  c r i t i c a l  stress i s  'end' 

p l a s t i c  flow occurs, and the  l i f e  'end For stress ranges above 

becomes governed by t h e  p l a s t i c  f l o w  according t o  equation (1). 

f i r s t  approximation, l e t  it be assumed t h a t  t he  familiar power l a w  r e l a -  

t i o n  e x i s t s  between t h e  p l a s t i c  flow and the  stress range causing it. 

That i s  

A s  a 

d 
a"p A(& - 2aend) ( 3 )  

Subs t i tu t ing  i n  equation (3) t h e  value of 

solving f o r  AD 

A€ from equation (l), and 
P 

- 
- 2aend + 

aa = 2a end 

Or, dividing by the  e l a s t i c  modulus t o  obtain the  r e l a t i o n  i n  terms of 

s t r a i n  

(4 )  

Equation (5)  a l s o  r e l a t e s  t h e  e l a s t i c  s t r a i n  range as a power l a w  i n  

terms of t he  cyc l ic  l i f e ,  bu t  it includes an endurance l i m i t  term i n  

cont ras t  t o  equation ( 2 ) .  

much more sa t i s f ac to ry  re la t ion ,  capable of accommodating the  C . C ) E C P ~ ~  cf 

an endurance limit, 

p r a c t i c a l  problems, it can be shown, however, t h a t  t he  differences in-  

volved between t h e  two equations are r e l a t ive ly  s m a l l .  

I n  pr inciple ,  therefore,  equation (5)  i s  a 

For t he  numerical purposes associated with many 
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It i s  a l s o  apparent, from equation ( 3 ) ,  t h a t  t h e  endurance l i m i t  

en te rs  d i r ec t ly  in to  the  r e l a t i o n  between stress range and p l a s t i c  s t r a i n  

range and t h i s  equation might, therefore, a l so  be used d i r e c t l y  t o  de te r -  

mine the  endurance limit, without introducing the  cycl ic  l i f e .  Thus from 

equation (3) 

The authors have attempted t o  determine whether equations (5)  or ( 6 )  

could be used on fa t igue  data t o  determine r e l i a b l e  values of endurance 

limits. Some of t he  results a re  shown i n  the  appendix. It w a s  concluded 

t h a t  f o r  even hypothetical  s e t s  of dzt~; t5z-L is ,  data with b u i l t - i n  

s c a t t e r  less than that obtained from ac tua l  t es t  data, t h e  method re-  

quires data a t  high cycl ic  l i fe ,  where p l o t s  of Acel versus Nf show 

d i s t i n c t  curvature, i n  order t o  determine a c l ea r ly  defined endurance 

l i m i t .  I n  the absence of such data, equation ( 2 )  can be assumed t o  

represent t he  data adequately i n  the  l o w  and intermediate cycle l i f e  

range ( f o r  most mater ia ls  up t o  10 cycles). 

Of equation (2), it i s  used i n  the  remainder of t h e  discussion, with the  

6 Because of the  s implici ty  

recognition t h a t  it i s  an approximation t h a t  implies t h e  non-existence 

of an endurance l i m i t  ( i n f i n i t e  l i f e ) ,  but i n  prac t ice  i s  not inconsist-  

en t  i n  representing data  i n  the  l i f e  range of i n t e r e s t  (usual ly  below 

10 cyc les )  even f o r  cases involving endurance limits. For materials 
6 

a t  
Nf 

that demonstrate d i s t i n c t  curvature i n  p l o t s  of k versus 

l i v e s  w e l l  below 10 

t i o n  ( 2 )  by i t s  equivalent, equation (5), wherever the  former appears 

e l  
6 

cycles, there  i s  no d i f f i c u l t y  i n  re_nl%cir.g qdz -  

i n  t h e  discussions t o  follow. 
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Relation between t o t a l  s t r a i n  range and cyc l ic  l i f e .  

Since f o r  many appl icat ions it i s  the  t o t a l  s t r a i n  range t h a t  i s  of 

i n t e r e s t ,  r a the r  than e i the r  the  p l a s t i c  or e l a s t i c  component, equa- 

t i o n s  (1) and ( 2 )  can be combined t o  obtain the  desired sum 

This equation w i l l  be used i n  the  remainder of t h i s  repor t  as t h e  basic  

r e l a t i o n  between cyc l ic  l i f e  and t o t a l  s t r a i n  range. 

schematically the  graphical  implications of equation (7 ) .  

against  cyc l ic  l i f e  on log-log coordinates, both components produce 

s t r a i g h t  lines. 

however, not a s t r a igh t  l ine .  

t he  e l a s t i c  component i s  almost negl igible  compared t o  the  p l a s t i c  com- 

ponent. The t o t a l  s t r a i n  range, &, t hus  almost coincides completely 

with t h e  s t r a i g h t  l i n e  f o r  the  p l a s t i c  component. A t  t he  higher cyc l ic  

l i v e s ,  however, t he  p l a s t i c  s t r a i n  range rapidly becomes negligible,  

while t h e  e l a s t i c  s t r a i n  range r e t a i n s  a r e l a t i v e l y  high value because 

of t h e  lower slope of the  & l ine .  Thus, t he  & curve approaches 

tangency t o  t h e  e l a s t i c  l ine .  

curves is, f o r  most materials, i n  the v i c i n i t y  of 10 cycles. Thus, i f  

l i f e  ranges of l e s s  than 1000 cycles  are involved, it i s  usual ly  per- 

missible  t o  neglect consideration of t he  e l a s t i c  component. 

hand, i f  the  problem involves l i v e s  i n  t h e  v i c i n i t y  of 100,000 cycles, 

t h e  s t r a i n  of major i n t e r e s t  i s  t h e  e l a s t i c  s t r a i n  range (or, equiva- 

l en t ly ,  t h e  s t r e s s  range). Basically, it i s  probably s t i l l  loca l ized  

Figure 1 shows 

Plo t ted  

Because the  s t r a i n  sca le  i s  logarithmic t h e i r  sum is,  

It can be seen t h a t  i n  the  low l i f e  range, 

e l  

The cross-over point  between the  two 

4 

On the  other  
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p l a s t i c  f l o w  t h a t  induces fatigue,  even a t  the  very high l i ves ,  but meas- 

urement of t he  p l a s t i c  flow i s  d i f f i c u l t ,  and t h e  s t r e s s  range apparently 

becomes an adequate measure of th i s  local ized p l a s t i c  flow. 

One f ina l  point  can be made i n  connection with f igure  1 t h a t  i s  of 

p r a c t i c a l  i n t e r e s t  i n  t h e  experimental determination of material behavior. 

It can be seen t h a t  i f  t h e  e l a s t i c  and p l a s t i c  l i n e s  are t o  be determined 

by measurement, t he  p l a s t i c  l i n e  should be accurately determined i n  t h e  

low-cycle range, where it produces i t s  grea tes t  influence; whereas t h e  

e l a s t i c  l i n e  should be most accurately determined i n  t h e  high-cycle range. 

Thus, i f  compromises have t o  be made i n  f a i r i n g  curves t o  " l inear ize"  

them, the  range of most s ign i f icant  influence should be favored. This 

w a s  done i n  the  ana lys i s  shown i n  t h i s  report  and when analyzing the  data. 

i n  reference 2, 

DIPdZCT DETERMTNATION OF STRESS-STRAIN-LIFE R U T I O N S  

I n  t h e  discussions t o  follow, two approaches w i l l  be indicated which 

can be used t o  determine t h e  in te r - re la t ions  among s t r e s s  range, s t r a i n  

range, and cyc l ic  l i f e .  A s  already indicated, t h e  types of r e l a t i o n s  

sought w i l l  be those t h a t  a r e  based on equation (1) i n  conjunction with 

equation ( 2 )  instead of t h e  (probably) more r e a l i s t i c  equation (5)  which 

includes an endurance l i m i t .  More accurate r e s u l t s  could be obtained a t  

t h e  expense of addi t iona l  experimental data. 

e n t i r e l y  on data  obtained i n  fa t igue  t e s t s .  

The approach i s  based 

Measurement of constants. 

I n  the  most general  sense t h e  constants M, z, G, and y must be 

regarded as proper t ies  which vary fram material t o  material ,  and which 
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can bes t  be determined experimentally from s t r a i n  cycling t e s t s .  

though there  a r e  four constants they are ,  i n  pr inciple ,  determinable from 

t e s t s  a t  only two f ixed t o t a l  s t r a i n  range l e v e l s  f o r  which the  measured 

quant i t ies  a r e  s t r e s s  range and l i f e .  

s t r a i n  range may be determined, using the  e l a s t i c  modulus. 

Al- 

From the  s t r e sg  r-e, the  e l a s t i c  

A logarithmic 

p lo t  of e l a s t i c  s t r a i n  range versus l i f e  i s  then constructed from which 

G and y can be determined. Subtraction of e l a s t i c  s t r a i n  range fram 

t o t a l  s t r a i n  range provides the  p l a s t i c  s t r a i n  range which can be p lo t t ed  

logarithmically against  l i f e .  Such a p l o t  permits calculat ion of M 

and z1 If, for example, t he  applied s t r a i n  ranges a r e  Ae1 and nE2, 

t he  corresponding measured s t r e s s  ranges ACT, and Au2, while the  

cyc l ic  l i v e s  a r e  and N2 respectively, the  constants become N1 

-z Acl -Z  
M = (nEl - T) N1 = (&2 - 4) N2 

Obviously, an improvement i n  the  determination of t he  constants can be 

achieved by t e s t i n g  a t  more than two s t r a i n  levels.  The optimum s t r a igh t  

l i n e s  a r e  then drawn through t h e  avai lable  data  poin ts  e i t h e r  by inspec- 

t i o n  o r  by l e a s t  square procedures. The constants can then be determined 
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accordiag t o  equation ( 8 ) ,  using any two poin ts  on the  optimized s t r a igh t  

l i nes ,  r a the r  than any individual experimental data points, 

Also, as already indicated, the most des i rab le  region i n  which t o  

determine the  p l a s t i c  s t r a i n  ra.nge constants, M and z, i s  t h e  range 

of l o w  cyc l ic  l i f e ,  whereas t h e  most des i rab le  region f o r  determination 

of t he  e l a s t i c  s t r a i n  range constants, G and y, is t h a t  at  high 

cyc l ic  l i f e .  

occur i f  t h e  e n t i r e  l i f e  range of i n t e r e s t  i s  covered i n  t h e  tests. 

pr inc ip le ,  however, r e l a t i v e l y  few t e s t s ,  as low as two, a r e  needed t o  

determine all four  constants. 

Relat ion between s t r e s s  range and s t r a i n  range. 

The most accurate determination of t he  constants w i l l  thus  

I n  

The p r inc ipa l  need i n  design calculat ions i s  f o r  a r e l a t i o n  between 

Such a r e l a t i o n  provides a means of com- stress range and s t r a i n  range, 

bining the  equlXbrium equations involving s t resses ,  and t h e  canpati- 

b l l i t y  equations involving 

(1) and ( 2 ) ,  and conibining 

I n  equation ( 9 )  t he  s t r e s s  

understood that when it i s  

strains. Eliminating Nf between equations 

with equation ( 7 ) ,  r e s u l t s  i n  

range i s  designated &, but it i s  t o  be 

measured experimentally i n  a cyc l ic  s t r a i n  

range t e s t ,  during which the  s t r e s s  range may vary continuously, it w i l l  

be taken as the  value at  the  ha l f - l i fe .  Since f o r  most mater ia l s  and 

s t r a i n  ranges, t he  s t r e s s  range has e s sen t i a l ly  s t ab i l i zed  at  a constant 

value by t h e  time the  h a l f - l i f e  i s  reached, t h e  s t r e s s  range & has 

already been re fer red  t o  as the  asymptotic s t r e s s  range. 

t i o n  ( 9 )  represents  e s sen t i a l ly  a r e l a t i o n  between the  t o t a l  s t r a i n  

range and the asymptotic s t r e s s  range. 

Thus equa- 
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It should be pointed out, moreover, tha t  what i s  desired f o r  analysis  

i s  a r e l a t i o n  between s t r e s s  range and t o t a l  s t r a i n  range i n  order t o  per- 

mit i n t e r - r e l a t ion  between the  equilibrium and compatibi l i ty  equations. 

It i s  not necessary t h a t  t he  r e l a t ion  be expressible ana ly t ica l ly ,  as i n  

equation (9), although t h e  equation appears su i t ab le  f o r  t h i s  purpose f o r  

most of the mater ia ls  examined t o  date. The r e l a t i o n  could. be expressed 

completely graphically, a s  by a curve bes t  passing through the  data  a s  

i s  usual ly  done f o r  a s t a t i c  s t r e s s - s t r a in  curve. 

imposed i n  the  numerical ana lys i s  of spec i f ic  problems by t h e  use of a 

graphical  r e l a t i o n  instead of an ana ly t ica l  expression. 

No l imi t a t ions  a r e  

SOME APPROXIMA!E FiELATIONS 

Although it i s  r e l a t i v e l y  simple t o  measure t h e  cyc l ic  s t r e s s  s t r a i n  

r e l a t ion ,  and the  l i f e  cha rac t e r i s t i c s  under s t r a i n  cycling, specimens 

and laboratory f a c i l i t i e s  a r e  not always avai lable  t o  obtain t h e  neces- 

sary data. 

be ab le  t o  make estimates based on available data  of t he  most l b i t e d  

type. 

serve a very usefu l  purpose, provided the  l h i t a t i o n s  of these approxi- 

mations a r e  recognized. I n  the  following sect ions some approximate 

r e l a t i o n s  w i l l  be developed that may serve adequately i n  preliminary 

analysis.  

reasonable t o  expect t h a t  the  ac tua l  proper t ies  of t h e  mater ia l  involved 

w i l l  be  determined by t e s t  r a the r  than relying on approximations. 

The data  used for determining the predict ing parameters are shown 

i n  f igu res  2 through 1 7  and were taken from some e a r l i e r  work of the 

Especially i n  the  ear ly  stages of design, it i s  desirable  t o  

Thus approx-te r e l a t ions  involving r ead i ly  ava i lab le  data  can 

For the  final, analysis  of a chosen design, it would appear 
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authors ( re f ,  2 )  except t h a t  data  points  with cycl ic  l i v e s  l e s s  than 

10 cycles were omitted from these plots. 

developed are those t h a t  w i l l  best predict  or represent the  l e a s t  square 

e l a s t i c  and p l a s t i c  s t r a i n s  versus l i f e  l i n e s  (on log-log p l o t s )  f o r  the 

wide v a r i e t y  of mater ia ls  tes ted.  

"A" l i n e s  of f igu res  2 through 17. 

lowing procedure was used: 

were those f o r  which the  p l a s t i c  s t r a i n  range w a s  g rea te r  than half the  

e l a s t i c  s t r a i n  range, while for the e l a s t i c  l i n e  the  data  poin ts  used 

were those f o r  which the  e l a s t i c  s t r a i n  range w a s  g rea te r  than h a l f  the  

p l a s t i c  s t r a i n  range. This w a s  done, as w a s  pointed out e a r l i e r ,  i n  

order t o  obtain the  bes t  f i t  of the  data i n  the  regions where they a r e  

most s ign i f icant ,  

The approximate r e l a t i o n s  t o  be 

The l e a s t  square l i n e s  used a r e  the  

In ca lcu la t ing  these l i nes ,  t h e  f o l -  

f o r  t he  p l a s t i c  l i ne ,  the  data  poin ts  used 

It can be seen from figs .  7 and 1 4  t h a t  these two mater ia l s  

(annealed 304 and AM 350 s t e e l s )  gave very nonlinear t rends  i n  the  

p l a s t i c  data  due t o  the  f a c t  t h a t  they  a r e  both bas i ca l ly  unstable and 

transform during cycling. Thus, a t  each s t r a i n  leve l ,  or l i f e ,  a some- 

what d i f f e r e n t  mater ia l  i s  being tes ted,  

mater ia l s  (nos. 6 and 13) were omitted from p l o t s  made f o r  t he  purpose of 

determining the  parameters f o r  predict ing t h e  p l a s t i c  s t ra ins .  The 

s t a t i c  t ens i l ep rope r t i e s  t o  be used i n  t h e  following ana lys i s  a r e  l i s t e d  

i n  t a b l e  I. 

For t h i s  reason, these two 

Parameters, - Before deriving any r e l a t ions ,  it w i l l  be in s t ruc t ive  

t o  consider f i r s t  the  proper t ies  t h a t  en te r  i n t o  the  approximations, and 

t h e  b a s i s  f o r  t h e i r  use. 

Tensi le  ductility. - The t e n s i l e  d u c t i l i t y  i s  a property usually 

available t o  the  designer f o r  any mate r i a l  l i k e l y  t o  be of i n t e re s t .  
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Since the  d u c t i l i t y  i s  a p l a s t i c  s t r a i n  value, it would appear desirable  

t o  make use of it i n  the  p l a s t i c  s t r a i n  range-l i fe  equation (1). I n  the  

discussion t o  follow d u c t i l i t y  w i l l  be taken as the  "true" or "logarithmic" 

value, based on measurement of reduction i n  area i n  t h e t e n s i l e  t e s t .  Thus 

where D i s  the  d u c t i l i t y ,  A. and Af a re  the  in i t ia l  and f i n a l  a reas  

of the  f r ac tu re  cross-section i n  the  t e n s i l e  t e s t ,  and R.A. t he  conven- 

t i o n a l  reduction i n  area - *o - Af 
-7 

Coffin ( r e f ,  8)  has proposed t h a t  t he  d u c t i l i t y  be introduced i n t o  

the  p l a s t i c  s t r a i n  range-l i fe  equation i n  such a manner t h a t  the p l a s t i c  

s t r a i n  range becomes equal t o  t h e  d u c t i l i t y  when t h e  number of cycles  i s  

equal t o  1/4. 

t he  concept t h a t  a conventional t e n s i l e  t e s t  const i tutesone quarter of a 

cyc l i c  s t r a i n  t e s t  i n  which the  strain i s  completely reversed. I f  the  

quarter-cycle cons t i tu t ing  t h e  t e n s i l e  t e s t  were car r ied  t o  completion a s  

p a r t  of a cyc l ic  s t r a i n  t e s t ,  t he  load would f irst  be reduced t o  zero i n  

t h e  second quarter of t h e  cycle, a c q r e s s i v e  force applied during the  

t h i r d  quarter  causing a compressive p l a s t i c  f l o w ,  and a r e tu rn  t o  zero 

load during the  four th  quarter, placing t h e  specimen i n  a pos i t ion  f o r  

r e p e t i t i o n  of t h e  s t r a i n  cycle, 

The probable reasoning behind this  suggestion stems from 

The manner of including the t ens i l e  t e s t  as an extreme case of 

cyc l ic  p l a s t i c  flow is ,  however, open t o  some question. Another form of 

reasoning has been offered by Martin ( ref .  9 )  who t r e a t e d  t h e  problem of 
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cumulative fa t igue  damage, and who arr ived a t  a form of equation (1) such 

t h a t  t h e  e f fec t ive  value of AE i s  fi D a t  Nf = 1/4, while Manson 

(ref. IC) arr ived  a t  another e f fec t ive  value of & of 1.5 D a t  

Nf = 1/4 cycle, 

P 

P 

The problem of including the  conventional t e n s i l e  t e s t  as an extreme 

of t he  cycl ic  t es t  i s ,  actual ly ,  only an academic question. I n  r e a l i t y ,  

t h e  t e n s i l e  t e s t  i s  qui te  d i f f e ren t  f romthe  cyc l ic  s t ra in ing  t e s t .  Thus, 

t h e  v a l i d i t y  of considering the  t ens i l e  tes t  as a quarter,  or some other 

f r ac t ion  of cycl ic  s t ra in ing  t e s t  would depend on t h e  experimental deter-  

mination of t he  consequences of the assumption, ra ther  than on i t s  theo- 

retical  significance. It i s  therefore important t o  examine how well  t h i s  

assumption i s  borne out f o r  spec i f ic  mater ia ls  as a means of es tabl ishing 

i t s  va l id i ty .  Figure 18 shows t h e  r e l a t ion  between 

f o r  t h e  materials being investigated.  

mining t h e  in te rcept  of t he  least square' p l a s t i c  l i n e s  a t  

( f igures  ZA through 17A).  If the  assumption t h a t  AE = D at  Nf = 1 /4  
P 

were va l id ,  a l l  t he  points  would l i e  on a horizontal  s t r a igh t  l i n e  

(&p/D)1/4 = 1. 

assumption and the  data. 

least square p l a s t i c  l inesand other values of N, w a s  t r i ed .  It w a s  

versus D (kp /D ) 1/ 4 

The dxta were obtained by deter-  

Nf = 1 /4  

Considerable deviation i s  seen t o  e x i s t  between t h i s  

A de ta i led  analysis  of t h e  in te rcept  of t he  

found that a much inqroved correlat ion 

with t h e  l i f e  of 10 cycles were used. 

c a l l y  i n  f igure  19  and the  curve shown 

I 

could be obtained i f  t he  in te rcept  

This cor re la t ion  i s  shown graphi- 

representing the  da ta  i s  

(14) 
D 3/4 
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On the  basis of t h i s  f igure  it can be seen t h a t  t h e  d u c t i l i t y  i s  most 

useful  i n  determining one point on the p l a s t i c  l i ne ,  and tha t  point  can 

be taken at 10 cycles, 

Ultimate t e n s i l e  strength. - The ult imate t e n s i l e  strength i s  de- 

fined as t h e  maximum load sustained by a specimen during a t e n s i l e  tes t ,  

divided by the  o r ig ina l  cross-sectional area. 

r ials the  maximum load occurs after appreciable elongation (and reduc- 

For most duc t i l e  mate- 

t i o n  i n  area), This property must thus be regarded as highly a r t i f i c i a l ,  

since the load and area used i n  the  computation do not occur simulta- 

neously. However, it i s  t h e  most comonly c i t e d .  property used as a 

measure of material strength+ hence it i s  desirable  t o  determine whatever 

cor re la t ions  t h a t  can be obtained as a guide i n  estimating fatigue 

properties.  

It has long been known t h a t  t h e  ultimate t e n s i l e  strength can be 

used t o  give some indicat ion of the  endurance l i m i t  of a material. This 

type of cor re la t ion  has not always been successful, but it does indicate  

that  t h i s  property i s  r e l a t ed  i n  some way t o  the  behavior a t  high cyc l ic  

l i f e .  P lo t s  were therefore  made of the in te rcept  of t he  l e a s t  square 

e l a s t i c  l i n e s  a t  a number of  d i f fe ren t  cyc l ic  l i v e s  (figs.  2A 

through 17A) versus ultimate t e n s i l e  strength f o r  a l l  the  mater ia ls  
5 

investigated. 

shown i n  f igu re  ( 2 0 ) .  

mation 

The best cor re la t ion  obtained w a s  a t  10 cycles as i s  

It can be seen tha t  as a reasonable f i rs t  approxi- 
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o r  

While t h i s  r e l a t i o n  must obviously be regarded as very approximate - 
since it r e l a t e s  two d i f f e ren t  types of t e s t s  by a property t h a t  i s  not 

even r e a l i s t i c a l l y  r e l a t ed  t o  e i t h e r  t e s t  -- it serves the  very useful 

purpose of indicat ing the  approximate loca t ion  of one point  on the  

s t r a igh t  l i n e  represented by equation ( 2 ) .  Thus, one point on the l i n e  

of e l a s t i c  s t r a i n  versus cyc l ic  l i f e  can be determined by considering 

the  l i f e  a t  10 cycles. 5 The e l a s t i c  s t r a i n  range developed a t  t h i s  l i f e  

i s  approximately 90 percent of the e l a s t i c  s t r a i n  developed by a s t r e s s  

equal t o  the  (nominal) ultimate t ens i l e  strength of t he  material .  

Tensile f r ac tu re  s t r e s s c  - The f rac ture  s t r e s s  i s  determined by 

dividing the  load j u s t  p r i o r  t o  f rac ture  by the  a rea  measured j u s t  a f t e r  

f rac ture ,  Although the  load decreases a f t e r  the ult imate t e n s i l e  s t r e s s  

i s  reached, the  cross-sect ional  area decreases more rapidly,  thus  r e s u l t -  

ing i n  a progressively increasing "true s t ress" .  I n  a l l  cases, therefore,  

the  f r a c t u r e  s t r e s s  i s  e i t h e r  equal t o  or greater  than the  ult imate ten- 

s i l e  s t ress .  

Even though the  f r ac tu re  s t r e s s  takes i n t o  account ac tua l  areas,  and 

is  therefore  a "true" s t r e s s ,  it is s t i l l  a somewhat ideal ized property 

because it does not take in to  account t r i a x i a l i t y  and non-uniformity of 

stress that develops i n  a t e n s i l e  specimen a f t e r  "necking" takes  place. 

I n  view of t he  a r t i f i c i a l i t y  of t h i s  property, together with the  f a c t  

t h a t  it i s  obtained i n  a s t a t i c  t ens i l e  t e s t  which does not involve the  
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material i n  e i t h e r  t he  cycl ic  hardening or softening tha t  develops i n  a 

fa t igue  test ,  it can be expected t h a t  t h e  u t i l i t y  of t h i s  property i n  

predict ing the  fa t igue  behavior w i l l  be l imited.  Since, however, only 

approximations a r e  sought, a correlat ion w a s  attempted f o r  t h e  la rge  

number of mater ia ls  investigated both i n  tension and i n  axial fatigue.  

If  t h e  t e n s i l e  t e s t  i s  t o  be regarded as one-quarter cycle of a 

fa t igue  test ,  it i s  na tura l  t o  expect t h a t  t h e  l i n e  of e l a s t i c  s t r a i n  

(or corresponding s t r e s s )  associated with equation ( 2 )  i n t e r sec t  t h e  

l i f e  at  a stress range which i s  twice t h e  f rac ture  stress. 

Figure 21 shows the  cor re la t ion  obtained when the f r ~ c t x - e  stress io 

p lo t t ed  against  t he  intercept  a t  

N = 1/4 

Nf = 1/4  of t he  optimized l i n e a r  r e l a -  

t i o n  between e l a s t i c  s t r a i n  and 

r e l a t i o n  i s  very nearly l inear ,  

cyclic l i f e  on log-log coordinates= 

indicat ing t h a t  

The 

f 0 

= (+j1/& = 2.5 - E 

where u i s  the  f rac ture  s t r e s s  i n  the  uniaxial t e n s i l e  test. 
f 

Thus equation (17)  provides information from which a point  on the  

e l a s t i c  l i n e  represented by equation ( 2 )  can be determined. It i s  merely 

U 

at Nf = 1/4. This re la t ion ,  together with f necessary t o  p l o t  2,5 - E 

equation (16)  provides suf f ic ien t  information t o  determine t h e  e l a s t i c  

l i n e  of equation (2)* 

There is, however, a d i f f i c u l t y  tha t  may arise i n  t ry ing  t o  use “f 
as a predic t ing  parameter and tha t  occurs when dealing with highly duc t i l e  

materials. For such materials, it becomes almost impossible t o  get  a 



- 20 - 

good measure of ac tua l  load carrying area a t  t he  time of f a i l u r e ,  and 

because of t he  many cracks known t o  be present  throughout t h e  “f’ hence 

highly necked down section- For these extremely duc t i l e  mater ia ls  it i s  

bes t  not t o  attempt t o  use uf f o r  predicting a point  on t h e  e l a s t i c  
fb 

l i n e ,  but rather,use some average slope for t he  l i n e  passing through the  

5 e l a s t i c  s t r a i n  range predicted at 10  cycles from u . The average 
U 

slope recommended for these cases i s  -0.1 as w i l l  be discussed l a t e r .  

Approximate re la t ionship  of t o t a l  s t r a i n  a t  lo4  cycles. - Thus f a r  

th ree  r e l a t i o n s  have been indicated for t he  determination of t he  two 

straight Lines assnciaked w-i th  the e h s t i n ,  a& p l a s t l c  m q z l n e i i t  of 

s t ra in ;  only one more r e l a t i o n  i s  required f o r  the  complete establishment 

of these two l ines .  The r e l a t i o n  that has been found most usefu l  i s  

based on f igure  22 which shows a g l o t  of longi tudinal  t o t a l  s t r a i n  range 

versus number of cycles  t o  failure f o r  t he  la rge  number of mater ia ls  

which data a re  ava i lab le  (ref. 2). It i s  in t e re s t ing  t o  observe t h a t  

a l l  the  curves (except f o r  beryllium) seem t o  come together at  approxi- 

mately 10 cycles, and a t  a t o t a l  s t r a i n  range of approximat’ely 1 percent. 

Thus, regardless  of material ,  a t o t a l  s t r a i n  range, consis t ing of the  sum 

4 

of e l a s t i c  and p l a s t i c  s t r a i n  ranges, of approximately 1 percent w i l l  

r e s u l t  i n  a l i f e  of 10,000 cycles. Actually, t h e  r e l a t i o n  t h a t  i s  most 

usefu l  a r i s e s  out of a refinement of t h i s  observation. 

versus 

represent  t he  data  f a i r l y  well, but  the equation of the  l i n e  i s  

A p lo t  of bel 

a t  10 cycles i s  shown i n  f igure  23. A s t r a igh t  l i n e  does 
4 

% 
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instead of 

(A€p)104 = a01 - 

which would r e s u l t  i f  the  best  r e l a t ion  

the  two s t r a i n s  being equal t o  0.01. 

were represented 

Equation (18) thus  represents  a usable r e l a t i o n  f o r  

by t h e  sum of 

the  determina- 

t i o n  of t he  p l a s t i c  s t r a i n  range at lo4 cycles when the  e l a s t i c  s t r a i n  

range i s  known. Since by equation ( 2 )  t he  e l a s t i c  s t r a i n  range versus 

cycl ic  l i f e  i s  approximated by a s t r a igh t  l i n e  on log-log coordinates, 

and since two points  on t h i s  l i n e  can be determined from equations (16)  

and (17), equation (18) i s  adequate for determination of t h e  p l a s t i c  

s t r a i n  range r e q a r e d  t o  cause f rac ture  at lo4  cycles. 

There i s  a possible  d i f f i c u l t y  tha t  may a r i s e  i n  using equation (18) 

and t h a t  is when dealing w i t h  very high strength mater ia ls  where the pre- 

dicted value of e l a s t i c  s t r a i n  range a t  l o4  cycles approaches or i s  

grea te r  than 0.0132. When t h i s  happens, t he  e r ro r  i n  computing 

from equation (18) can be very great. For such cases when the  computed 

value of & i s  l e s s  than 0.001 it i s  f e l t  t h a t  some average slope of 

the p l a s t i c  l i n e  through the  predicted point  a t  10 cycles should give 

more reasonable r e su l t s .  

high s t rength mater ia ls  i s  -0.6 a s  w i l l  ??e discussed l a t e r .  

Endurance l i m i t ,  - The most common de f in i t i on  of the endurance l i m i t  

n’p 

P 

The average slope recommended f o r  these very 

i s  the  s t r e s s  a t  t he  outermost f i b e r s  i n  an  a l t e rna t ing  bending t e s t  

v L A v w  WLIILl l  I U L U ~  U U ~ S  n u i  occur regardless of how many cycles a r e  

applied. I n  pract ice ,  however, t he  endurance limit i s  taken as a 

spec i f ic  point  on the  ACT - I!$ fa t igue  curve of a material;  f o r  s t e e l s  

h-1 --L4 -L D - 3  7 - - - ; -  3 - - - 
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t he  point i s  frequently a t  lo6 cycles. Choice of an a r b i t r a r y  l i f e  i s  

necessary not only because of the p rac t i ca l  d i f f i c u l t i e s  of determining 

prec ise ly  the  “knee” of the  a0 - Nf 

r ia ls  do not have well  defined “knees”. 

s t r e s s  l e v e l  i f  t he  number of cycles of stress appl icat ion i s  great 

curve, but a l so  because some mate- 

Fai lure  OCCUTB a t  almost any 

enough. Thus, information on the endurance l i m i t  makes avai lable  one 

point on t h e  Au - Nf 

we, or by d i r e c t  specif icat ion of cyclic life. Thus i f  aena i s  t h e  

endurance l i m i t  a t  a l i f e  of 

c I Q I D ~ ~ ~  s t r a i n  i=Zlige versus life is --=uL a t  N = Mend, where E i s  

t h e  e l a s t i c  modulus, 

curve, e i the r  by implication as t o  cycles  t o  fail-  

Nend cycles, one point  on t h e  l i n e  of 

?f l - -2  

E 
-1 .. -c 4 - 

It should be recognized, however, t h a t  t h e  endurance l i m i t  specif ied 

as conventional engineering information frequently refers t o  da ta  obtained 

i n  a l t e rna t ing  b ending t e s t s  , whereas t h e  discussion here refers t o  

axial straining. For t he  present it may be recognized tha t  since o n l y  

gross approximations a r e  desired, t h e  two types of endurance limits may 

be used interchangeably by noting f r o m  reference 10 t h a t  

t e n  bend 
= 0.65 send ‘end 

I n  t h e  ana lys i s  t o  be discussed the  uniaxial endurance l i m i t  i s  used 

i n  two d i f f e ren t  methods. 

tha t  the l i n e  represented by equation ( 2 )  i s  horizontal ,  t ha t  i s  

Thus t h e  e l a s t i c  s t r a i n  range i s  a constant over t he  en t i r e  l i f e  range, 

and since it i s  known a t  one value of l i f e ,  it i s  known at  a l l  values. 

Thus 

The first method makes use of t h e  assumption 

y = 0. 
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o r  

G = 2uend 

I n  the  second method the  point a t  t he  "knee" of the  endurance curve 

i s  used instead of t h e  r e l a t i o n  involving t h e  ult imate t e n s i l e  strength, 

equation (16). The "knee", f o r  numerical purposes t o  be discussed, i s  

7 assumed a t  10 cycles. Thus, instead of equation (16), use i s  made of 

t he  r e l a t ion  

E q i d 5 ~ ? n  ( 2 1 )  is then czliii=iiied w i t h  equation (i7j t o  determine the  con- 

s t a n t s  i n  equation (2) .  Since the  determination of t he  endurance lbit 

involves considerable fa t igue tes t ing,  and since t h e  purpose of t h e  

approximations t o  be discussed herein i s  t o  obtain l i f e  estimates from 

the most readi ly  determined mechanical propert ies ,  the r e l a t ions  involv- 

ing endurance Umit must be regarded as secondary t o  those involving 

proper t ies  determined from the  t ens i l e  t e s t  alone. 

Constant slope values. - Since the purpose of t h e  approximate for- 

m u l a s  t o  be derived i s  t o  obtain only estimates of cycl ic  l i f e ,  it may 

sometimes be suf f ic ien t  t o  use slope values of both t h e  e l a s t i c  and 

p l a s t i c  s t r a i n  range components a s  determined from other mater ia ls  t e s t e d  

under su i tab le  conditions. 

of -1/2 has been suggested by Coffin (ref. 8) .  

the  bes t  f i t  slopes ( the  same as the  e q o n m t .  z ir? eq. (1)) VCTSUS the 

d u c t i l i t y  f o r  t h e  materials of reference 2. 

rials have negative slopes of greater  magnitude than -1/2. 

For the  p l a s t i c  comonent of s t ra in ,  a slope 

Figure 24 shows a p l o t  of 

It i s  seen t h a t  most mate- 

A b e t t e r  
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"average" value might be -0.6 if it were desirable  t o  use t h e  same value 

f o r  a l l  materials. It i s  t h i s  "average" slope value t h a t  w a s  recommended 

f o r  use when t ry ing  t o  pred ic t  t h e  behavior of very high s t rength mate- 

r ia ls  as w a s  previously discussed. 

The slope of t h e  l i n e  f i t t i n g  the e l a s t i c  component of t h e  t o t a l  

s t r a i n  range ( the  same as t h e  exponent y i n  eq. ( 2 ) )  w a s  found t o  

range from -0.06 t o  -0.16 among the  materials analyzed. 

information i s  available,  an average value of slope y = -0.1 m y  be 

assumed, but no use i s  made of t h i s  s i m l i f i c a t i o n  i n  t h i s  report  except 

f o r  the cases of very duc t i l e  materials where u cannot be measii~ed 

accurately. 

Relation involving d u c t i l i t y  and endurance l i m i t .  

Where no other 

S 

A n  extremely single r e l a t i o n  was proposed by Langer ( re f .  3), which 

r e l a t e s  the  t o t a l  s t r a i n  range and cyclic l i f e  where t h e  following 

assumptions were made regarding t h e  previously discussed parameters. 

a)  The p l a s t i c  s t r a i n  range i s  equal t o  the  d u c t i l i t y  a t  a cycl ic  

l i f e  of 1 /4  cycle, 

The p l a s t i c  exponent i s  taken as -1/2 f o r  a l l  materials, 

The e l a s t i c  s t r a i n  component i s  constant, and i s  taken as t h e  

e l a s t i c  range a t  the endurance limit. 

b )  

c )  

Under these conditions the  resu l t ing  equation f o r  t o t a l  s t r a i n  range 

becomes 
-1/2 20end + -  D 

CV = CVp + Ace1 = ( N f )  E 
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Relation involving duc t i l i t y ,  ultimate t e n s i l e  s t rength and f r ac tu re  

s t ress .  

The two l i n e s  cons t i tu t ing  the e l a s t i c  and p l a s t i c  components of 

s t r a i n  range can be determined using t h e  t e n s i l e  da ta  r e l a t ions  involved 

i n  equations (14), (16), (17), and (18). The sum of the  two components 

then y i e lds  t h e  t o t a l  s t r a i n  range i n  terms of cyc l ic  l i f e  and prop- 

e r t i e s  determined from the  uniaxial  t e n s i l e  t e s t .  I n  prac t ice  a graphi- 

c a l  procedure proves t o  be very simple. The l i n e  f o r  the  e l a s t i c  com- 

ponent i s  constructed f i r s t  by establ ishing the  s t r a i n  range at 1 /4  cycle 

uu IU C Y C L C ~  ILUIII t,~lt: I”racLur.e stress and uit imate t e n s i l e  s t r e s s  

according t o  equations (16)  and ( 1 7 )  o r  by passing a l i n e  of slope -0.1 

5 --a ~n -___ Y - ?  n LT.. 

af can- through the  calculated s t r a i n  a t  10’ cycles  for materials where 

not be measured, The e l a s t i c  s t r a i n  range a t  lo4 cycles i s  then read 

from the  predicted s t r a i g h t  l i ne .  

p l a s t i c  s t r a i n  a t  lo4 cycles  i s  determined using equation (18). 

point a t  10 

10 cycles  determined by the  d u c t i l i t y  using equation (14) .  

where AEP a t  lo4 i s  computed t o  be less than 0.001, a l i n e  of constant 

slope -0.6 i s  passed through t h e  10 cycle point. 

l ec t ed  values of cycl ic  l i f e  are then added t o  give t o t a l  s t r a i n  range. 

From t h e  e l a s t i c  s t r a i n  range t h e  

The 

4 cycles  i s  then joined by a s t r a igh t  l i n e  t o  the  point  a t  

For t h e  case 

The ordinates  a t  se- 

It is, however, possible  t o  perform the  s teps  ana ly t i ca l ly  pro- 

viding r e l a t i o n s  for M, z, G, and y i n  terms of D, up and uf. 

These r e l a t i o n s  become 
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where 

(3 y = - 0.083 - 0.166 log  

0.179 
M = 0.827D 1 - 8 2  (.)($) ] 

z = - 0.52 - - 1 log  D + - 1 log [ 1 - 8 2  (2)(;0*177 
4 3 

Relation involving d u c t i l i t y ,  f rac ture  s t r e s s  and endurance l imi t .  

If an  endurance l i m i t  i s  avai lable  it is, of course, preferable  t o  

use a fa t igue  property t o  e s t ab l i sh  the e l a s t i c  s t r a i n  range r e l a t ion  

instead of resor t ing  e n t i r e l y  t o  the  proper t ies  from the  uniax ia l  ten-  

s i l e  test. I n  t h i s  case it i s  log ica l  t o  construct  t h e  l i n e  f o r  e l a s t i c  

s t r a i n  range by using the  point  a t  the known endurance l i m i t  together 

with the  point  at  1/4 cycle determined by the  f r ac tu re  stress. 

endurance l i m i t  i s  given a t  lo7 cycles, use i s  then made of equation ( 2 1 )  

together  with equation ( 1 7 )  t o  construct the  e l a s t i c  s t r a i n  range l i n e .  

I f  t he  

However, it should be recognized tha t  t h e  "endurance l i m i t "  as considered 

here i s  regarded as a point  on the  s t ra ight  l i n e  of s t r a i n  range ( o r  

s t r e s s  range) versus cyc l ic  l i f e .  For mater ia ls  i n  which the  e l a s t i c  

curve tends t o  l e v e l  of f  considerably, so t h a t  a quoted endurance l i m i t  

is ha.rnna +L- m ~ . p - - + ~ , - ,  It1 _.--- ( 1  -n AL- 
u + J v I L u  c A L I G L u L V G  AllCC UI ~ L I C  C U L V ~ ,  it is wbviuus Ynat use of 

t he  spec i f ied  endurance l i m i t  w i l l  y ie ld  inaccuracies i n  the  construction 

of t h e  e l a s t i c  l i n e .  Hence, caution should be used i n  applying quoted 
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endurance limits unless the  l i f e  a t  the endurance l i m i t  i s  a l so  specified,  

and it i s  reasonably c e r t a i n  t h a t  the point  given occurs a t  t he  “knee” or 

before it i n  magnitude of cyc l ic  l i f e .  

Graphically, t h e  procedure f o r  using an endurance l i m i t  i s  iden t i ca l  

t o  t h a t  described previously, except t h a t  t he  point  on the  e l a s t i c  l i n e  

a t  10 cycles determined from the  ultimate t e n s i l e  strength i s  replaced 5 

by t h e  point  a t  the  endurance l i m i t .  Analytically,  the  problem i s  

s l i g h t l y  more complicated because the l i f e  a t  which the  endurance l i m i t  

i s  taken, Nend, must be l e f t  as an  assignable variable.  The formulas 

i s  i11duGed 

It i s  thus  desirable  t o  derive separate formulas f o r  

Lm--.,.- C-< - l - -  - - - l < - - . L - J  2.0 

end fer G, -;, ?4, a& vcLulI lc  I a . . L I L Y  LulllyLLcabcu II N 

as a l i t e r a l  t e r m .  

spec i f ic  values of Nend. Those below r e f e r  t o  a value of Nend = 10 
7 

0.92 
= 2*5 ‘end (&) 

0.394 -u3 
M = 0.827D 1 - 166 (y) ‘end (2) ] nd 

1 
2, = 0,052 - - 4 

RESULTS AND DISCUSSION 

zT”3ilzilZlL4y of c ~ ~ ~ ~ ~ ~ c > ~ ~ ~  a&& oii i-el&ti-cel>- layge ii-(jij2uez-. 

of materials makes possible  a check o f  t he  v a l i d i t y  of t he  proposed r e l a -  

t i o n s  over a broad range of t he  variables.  It should be recognized, of 



- 28 - 

course, t h a t  since the  r e l a t ions  were derived, i n  part, f romthe  same 

data  used t o  check t h e i r  va l id i ty ,  there e x i s t s  a bias toward the  correla-  

t i o n  which cannot be resolved without fur ther  data  on addi t ional  mate- 

r i a l s .  Since these correlat ions were arr ived a t  i n  1961 ( r e f .  11) t h e  

authors have t e s t ed  6 addi t ional  materials. These mater ia ls  were not 

used i n  obtaining t h e  cor re la t ions  but a r e  included i n  t h i s  report  f o r  

t he  purpose of checking the  predicting methods. 

these materials a r e  l i s t e d  i n  

a re  p lo t ted  i n  f igures  25 through 30. 

The t e n s i l e  data  f o r  

able I and the  experimental fa t igue  data  

Comparisons of predict ions wi-th exprinent,al  i3-~t,.z f ~ r  ~ . V Q  ~&hnds 

a re  presented along with the  l e a s t  squares, or bes t  f i t  curves, f o r  t h e  

22 mater ia ls  investigated.  

through 1 7  and 25 through 30. 

on the  d u c t i l i t y  and endurance limit as described by equation ( 2 2 ) -  

assigning a value of endurance l i m i t  an  extrapolat ion of the e l a s t i c  

s t r a i n  range data t o  lo7 cycles was  used and these values are l i s t e d  i n  

t a b l e  I. 

equations ( 2 3 )  through ( 2 7 )  where only the  propert ies  obtained f r o m t h e  

uniaxial  t e n s i l e  t e s t  as l i s t e d  i n  tab le  I were used. It can be seen 

t h a t  i n  general, equation ( 2 2 )  yields conservative values of l i f e  for a 

given t o t a l  s t r a i n  range, while t he  use of equation ( 2 3 )  i n  conjunction 

with the  constants of equations (24) t o  ( 2 7 )  y ie ld  l i f e  values t h a t  more 

c lose ly  comply with the data. 

These comparisons a r e  given i n  f igures  2 

The "C" l i n e s  are t h e  predict ions based 

I n  

The "Elrr l i n e s  of these f igures  represent the  predict ions by 

A more complete comparison of the two methods i s  shown i n  f igu res  31(a) 

and 31b). Each of these f igures  shows the r a t i o  of predicted t o t a l  s t r a i n  

range t o  t h e  experimentally determined value against cyc l ic  l i f e  for a l l  
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t he  mater ia ls  investigated.  For these f igures  the  experimentally deter-  

mined t o t a l  s t r a i n  range w a s  taken as the  sum of the  l e a s t  squares l i n e s  

f o r  t h e  e l a s t i c  and p l a s t i c  components. Thus t he  r a t i o s  could be taken 

a t  a l l  values of l i f e  without regard f o r  spec i f ic  values a t  which data 

were obtained. 

I n  f igu re  31b the  predict ions are  base& on equation (22), using an 

experimentally determined d u c t i l i t y  and endurance l i m i t .  The endurance 

limits used t o  obtain f igure  31b were not d i r e c t l y  determined, but were 

r a the r  as previously mentioned obtained by extrapolat ion of the  t o t a l  

C h  1 ,.PA A *  1 n7 ----- - - 
*IvAwIAI uu s lL1c UI IU L,YUCS. Thus tne metnod as evaluated here 

i s  given the  benef i t  of an accurate measure of endurance l i m i t  ( f o r  t he  

purpose of cor re la t ing  the  lower l i f e  da t a ) .  

t h i s  method y i e lds  conservative values of s t r a i n  f o r  a given l i f e .  Where 

conservative design i s  desirable ,  the method may serve very well, but it 

must be recognized t h a t  f o r  some mater ia ls  and i n  some l i f e  ranges the  

allowable s t r a i n  predicted by t h i s  method w i l l  be as low as 1 /4  the  

a c t u a l  value. I n  addition, t he  method requires  the  experimental deter-  

mination of an endurance l i m i t  i n  order t o  cor re la te  t he  long- l i fe  data  

a t  all. 

I n  general  it i s  seen t h a t  

The predic t ions  of f igure  31a are  based on making use of t h e  duc- 

t i l i t y ,  f r ac tu re  s t r e s s ,  and u l t i m a t e  t e n s i l e  s t rength as determined i n  

the  s t a t i c  un iax ia l  t e n s i l e  t e s t .  An improvement i s  obtained r e l a t i v e  

t o  the  cor re la t ion  of f igure  31a, a l t h o r n  f o r  a given 1 i f e  t.he pr~rlir tec! 

s t r a i n  i s  sometimes higher and sometimes lower than  the  measured s t r a in ,  

whereas i n  f igure  31b the  predicted s t r a i n  i s  general ly  lower. It i s  



- 30 - 

possible t o  make the  method using t e n s i l e  data alone predominantly con- 

servative by dividing the  predicted s t r a i n  by approximately 1.5; the  

r e s u l t  i s  s t i l l  an improvement ( i n  the sense t h a t  b e t t e r  cor re la t ion  i s  

obtained) over the  method using equation ( Z Z ) ,  despi te  the  f a c t  t h a t  no 

fa t igue  propert ies  a re  required t o  make the analysis.  

A f i n a l  point  t o  be made i n  comparing the  two methods i s  t h e  very 

important by-product resu l t ing  from the method t h a t  f i t s  the  e l a s t i c  

s t r a i n  range data best as well  as the t o t a l  s t r a i n  range data. 

enables the  designer t o  get a first approximation t o  t he  s t r e s s  range - 

s t r a i n  range curve which can be used i n  a s t r e s s  analysis  t o  obtain a 

This 

b e t t e r  approximation t o  the  t o t a l  s t r a ins  i n  a s t ructure  than i f  an 

e l a s t i c  ana lys i s  alone were made. !!%is improved value of t o t a l  s t r a i n  

range would then r e s u l t  i n  an even be t t e r  estimate of l i f e .  

t i o n  based on a horizontal  e l a s t i c  l i n e  through t h e  endurance l i m i t  

r e s u l t s  i n  an inaccurate representation of t h e  stress-range - s t r a i n  range 

The predic- 

da ta  and hence can only be used for estimating l i f e  from the  t o t a l  s t r a i n  

range, but  it cannot a i d  i n  the  computation of t h i s  value. 

CONCLUSIONS 

The following conclusions are based upon extensive analysis  of room 

temperature strain-cycling fat igue data f o r  t he  twenty-two mater ia ls  

presented i n  t h i s  paper. 

1) The e l a s t i c  and p l a s t i c  components of  t o t a l  s t r a i n  range versus 

G iiie data measured i n  the  i i f e  range of 10 t o  io- cycles can adequately 

be represented by s t ra ight  l i n e s  on log-log coordinates, for most mate- 

r ia ls  investigated.  

those materials t h a t  are unstable and transform during cycling. 

The only exceptions were t h e  p l a s t i c  component of 
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2 )  A b h o d  w a s  presented which attempts t o  determine a c l ea r ly  de- 

f ined endurance l i m i t  from low and intermediate cycle fa t igue  data. 

w a s  concluded t h a t  unless the  e l a s t i c  s t r a i n  range versus l i f e  curve 

shows d i s t i n c t  curvature i n  t h i s  region, no such c l e a r l y  defined endur- 

ance l i m i t  can be obtained and therefore the  simple l i n e a r  r e l a t i o n  

which adequately represents  t he  data  can be used. 

It 

3 )  A simple method f o r  predict ing the  f a t igue  behavior of mate- 

r ia ls  from t h e i r  un iax ia l  t e n s i l e  propert ies  i s  presented. 

based upon t h i s  method as wel l  as the method of Langer were compared with 

 LE Sata foi- G, large iimfuer 0; materiais. 

proposed method i s  i n  general  an mrovement over t he  Langer method 

which has  an added disadvantage of requiring an endurance limit. The 

proposed method gives a very sa t i s fac tory  representat ion of the  t o t a l  

s t r a i n  range versus l i f e  r e l a t i o n  f rom 10 t o  10 6 cycles  and has  an 

Predictions 

CL - m e  r e s u l t s  indicate  t ha t  the  

added advantage i n  t h a t  it a l s o  predic t s  the s t r e s s  range-strain range 

r e l a t i o n  which i s  usefu l  i n  t h e  analysis  of any cyc l i c ly  loaded s t ructure .  
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APPENDIX - 
Some computations involving estimation of endurance l i m i t .  

n Equations 5 and 6 a re  both of  the form y = a + bx . I n  pract ice ,  

experimental data  a re  available f o r  corresponding values of y and x, 

and the  problem i s  t o  determine t h e  best  values of  a, b, and n which 

w i l l  cor re la te  t he  da ta  according t o  t h i s  equation. There are several  

methods avai lable  t o  do t h i s  ( re f .  1 2 )  but  unfortunately none involves 

a d i r e c t  p l o t  of y versus x on some coordinate system which permits 

the  optimum choice of t he  constants. The method t h a t  was therefore  used 

by the  authors i s  as follows: 

a )  se lec t  a value of the exponent n, 

b )  p lo t  y versus xn, 

c )  determine by conventional l e a s t  squares method t h e  values 

of a and b resu l t ing  f r o m  t h e  bes t  fit straight l i n e  

through the  data, 

d )  determine t h e  s u i t a b i l i t y  of t h e  choice of exponent n by 

calculat ing t h e  "standard deviation" ( r e f .  13), which i s  a 

measure of t he  average deviation of t he  da ta  poin ts  from t h e  

optimum straight l i ne ,  

e )  repeat t he  previous 4 s teps  f o r  a sequence of selected values 

of n. 

Among t h e  various values of n chosen, t h a t  value which y i e lds  the  

lowest "standard deviation:: can be regarded as tine bes t  vaiue. 

t h e  spacing between values of 

bes t  choice i s  narrowed down, the  spacing can be chosen as f i n e  as 

i n i t i a l l y ,  

n chosen can be qui te  coarse, but as the  
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desired t o  obtain the  bes t  value of n and the  associated best values 

of a and b. Although these computations can be performed manually, 

t he  a v a i l a b i l i t y  of high speed computing machinery g rea t ly  reduces the  

amount of labor  and does not discourage refinements i n  computation by 

choice of c lose ly  spaced values o f  the exponent n. 

Figure 32 shows property curves f o r  a hypothetical  material. The 

so l id  l i n e s  a re  idea l iza t ions  of m a t e r i a l  propert ies  where the  endurance 

l i m i t  i s  taken as zero. Thus, the & = & curve shows p l a s t i c  flow a t  

a l l  stress l e v e l s  (although the  deviation from the  e l a s t i c  l i n e  i s  very 

l i n e  i s  per- small i n  t h e  v i c i n i t y  of t h e  o r ig in j  while t h e  

f e c t l y  straight. Equations f o r  these curves are a l s o  given i n  f igu re  32. 

The c i r c l e s  represent hypothetical  "data" points,  and f i t  t he  assumed 

equations exactly. 

whether, given t h e  hypothetical  data  poin ts  shown by the  c i r c l e s ,  the  

proper endurance 1:'uait ( i n  t h i s  case zero) w i l l  unambiguously be indi-  

cated by the analysis.  

- Nf 

The question t o  be  answered i n  th i s  i l l u s t r a t i o n  i s  

Table I1 shows the  r e s u l t s  o f  the computation performed by the  method 

described f o r  determining the  endurance l i m i t  from t h e  

as seen i n  f ig .  32b, The assumed values of t h e  exponent z/d i n  equa- 

t i o n  (5) are shown i n  column l of Table 11. 

z/d, equation (5)  r e s u l t s  i n  a simple s t r a igh t  l i n e  of &/E versus 

Nf . Using standard s t a t i s t i c a l  methods, t h e  " l eas t  squares" s t r a igh t  

l i n e  w a s  obtained for each assumed value of 

t i o n  of t h e  poin ts  from the  l i n e  i s  indicated i n  column 2. 

deviat ion is, of course, zero f o r  the value of 

nEel - Nf curve 

For each assumed value of 

z/d 

z/d, t h e  standard devia- 

The standard 

since z/d = - 0.085, 
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t h i s  exponent is t he  one on which the hypothet ical  po in ts  a r e  based, bu t  

it can be seen t h a t  t he  standard deviation i s  qui te  s m a l l  f o r  even con- 

siderably erroneous values of z/d. Each "erroneous" value of z/d pro- 

duces an "indicated endurance l i m i t " ,  column 4, which compensates f o r  t h e  

e r r o r  i n  the  choice of 

t i o n  (5 )  t h a t  i s  i n  c lose agreement with the data points.  

z/d, and r e s u l t s  i n  a curve representing equa- 

The dot ted l i n e s  of f i gu re  3 2 ( b )  ind ica te  t h e  agreement between t h e  

various equations r e su l t i ng  from the l e a s t  squares f i t s ,  and the  "data" 

poin ts  on which they a r e  based. I n  the  range of t he  "data" points,  i n  

uus case between 10 and i o 5  cycies, it i s  c l e a r  t h a t  t he  choice of  

optimum f i t  i s  not completely unanibiguous. 

were t a i l o r e d  t o  give an  exact v a l u e  of endurance l i m i t  of zero, bu t  

small deviat ions i n  the  "data", so cha rac t e r i s t i c  i n  f a t igue  experiments, 

could e a s i l y  make t h e  determination of the endurance limit by t h i s  method 

qui te  ambiguous- 

L1-f - 

O f  course, the "data" here 

Table I11 shows similar computations using t h e  cyc l ic  s t r e s s - s t r a i n  

cha rac t e r i s t i c  of f i gu re  32(a) as the b a s i s  f o r  determining the  endurance 

l i m i t .  A s  before, bes t  r e s u l t s  a r e  obtained f o r  aend % 0, but  t he  

standard deviat ions are small f o r  other choices of 

ing  endurance limits. The degree of f i t  between t h e  "data" and the  various 

curves representing other values of l / d  a r e  shown i n  f igure  32(a). N o  

d i f fe rence  can be detected i n  these  curves f o r  the sca le  used t o  p l o t  

them. 

l /d,  and correspond- 

Further  ca lcu la t ions  t o  elucidate t h e  problem a r e  shown i n  t a b l e s  I V  

and V and f igure  33. I n  t h i s  case the mater ia l  i s  assumed t o  show an 
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endurance l i m i t  of 50,000 ps i .  

be 

The governing equations a r e  assumed t o  

0.246 
& = 100,000 + 284,000 (& P ) ( 3 2 )  

and 

- 0.160 
= EE = 100,000 + 300,000 ( N f )  

e l  ( 3 5 )  

6 where E = 32.5,:iC: psi .  However, f o r  the  present  ca lcu la t ion  cogni- 

zance w i l l  be taken of s c a t t e r  normally cha rac t e r i s t i c  of f a t igue  data 

by a r b i t r a r i l y  displacing the  ''data" po in t s  from t h e  basic  equations (32) 

and (33)- The displacements range between +-1 percent t o  55 percent,  

and t h e  exact magnitudes were chosen by use of t a b l e s  of random numbers. 

The "datat* poin ts  a r e  shown i n  f igure 33 by t h e  c i r c l e s ,  and t h e  bas ic  

curves (32) and (33) by the  continuous l i nes .  The curves and "data" i n  

these  computations a r e  shown i n  f igure 33 and tables I V  and V. I n  t h i s  

case, t he  "data" are limited t o  cyclic l i v e s  of lo5 cycles. 

t h e  standard deviat ions i n  t a b l e s  I V  and V and the dot ted curves i n  f i g -  

ure 33 (of which o n l y  two a r e  shown, t o  avoid congestion), it can be seen 

that considerable ambiguity e x i s t s  a t  t he  optimum endurance l i m i t .  The 

"data" can be f i t t e d  w e l l  by curves which vary considerably i n  endurance 

l i m i t .  

By comparing 

A f i n a l  computation i s  shown i n  f igu re  34. The data f o r  t h e  range 

up t o  lo5 cycles are here i d e n t i c a l  t o  those shown i n  f igu re  33 and addi- 

t . i o m l  "cL8.t.B." poinfc are  inel~cleci tc e9"eX-d thc rar;ge to I" i n 8  LJLLCD.  - . - - in -  rm- ll*e 

computations a r e  shown i n  t a b l e  V I .  Here it can be seen t h a t  t h e  ambiguity 

of endurance l i m i t  determimtion i s  grea t ly  reduced. Thus, i f  high cycle 
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data  a re  available,  t he  endurance l i m i t  can be determined by the  method 

outlined, but i f  only low cycle data  are available,  t he  method does not 

accurately determine the  endurance l i m i t .  

Although t h e  pr inc ip les  involved and the  conclusions of t he  computa- 

t i ons  described above were i l l u s t r a t e d  by the use of hypothetical  data, 

t he  author and hfs  eo-workers have attempted the  procedure on da ta  f o r  

numerous mater ia ls  which were determined experimentally. 

drawn were approximately the  same: 

or data i n  the  range where & versus Nf show d i s t i n c t  curvature, i n  

order t o  determine a c l ea r ly  defined endurance l i m i t .  

The conclusions 

the method requires  high-cycle data, 

e l  
I n  the  absence of 

high cycle data, an equation i n  the  form of ( 2 )  can adequately represent 

the  data  i n  t he  l o w  cycle range ( f o r  most materials, up t o  lo6 cycles) .  

Because of t h e  s h p l i c i t y  of equation ( 2 )  it i s  used i n  t h e  body of t h i s  

paper, with the  recognition that  it i s  an approximation t h a t  implies t h e  

non-existence of an endurance l i m i t  ( i n f i n i t e  l i f e ) ,  but i n  prac t ice  i s  

not inconsis tent  i n  representing data i n  the  l i f e  range of i n t e r e s t  

(usual ly  10 6 cycles)  even f o r  cases involving endurance limits. For 

materials t h a t  demonstrate d i s t i n c t  curvature a t  l i v e s  wel l  below 

10 6 cycles,  there  i s  no d i f f i c u l t y  i n  replacing equation ( 2 )  by i t s  

equivalent ( 5). 
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Figure 16. - F a t i g u e  behavior of 5456 H311 aluminum. material number 15. 
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